

INCREASING BENEFICIAL USE OF DREDGED MATERIAL IN THE USACE

Katie Brutsché, PhD Program Manager, National Regional Sediment Management Associate Technical Director, Navigation

DISCOVER | DEVELOP | DELIVER

SSIEED

Increase Beneficial Use to 70% by 2030

Convert 70% of sediments to beneficial use versus -40%

today

HOW DO WE GET THERE?

Enterprise-wide efforts

- Beneficial Use Tiger Team
- Beneficial Use Workshop
 - ERDC-led workshop July 2021
 - Create an enterprise-wide BU Working Group
 - Publish TR Series on "how to guide" for implementing BU
- Beneficial Use Hurdles Focus Group
 - Small focus group to identify and address hurdles to BU implementation
 - Geographic diversity representation from across the field, ERDC, and HQ
- Examine and update our existing policies to support BU

Technical/R&D efforts

- Develop innovative solutions and partnerships for beneficial use
 - Innovation in Sediment Management Strategic Focus Area
 - ERDC R&D Programs
 - Regional Sediment Management, Engineering with Nature, etc.
 - Advancement of BU approaches through R&D efforts
- Quantify and document current beneficial use practices in Navigation projects to showcase success and highlight potential opportunities to increase BU
 - Beneficial Use Database
 - Example at the Mouth of

Columbia River (RSM/NWP)

rps of Engineers

Engineer Research and Development Center

NATIONAL CHALLENGE

- Sedimentation in navigation channels and reservoirs represents >\$1B/year cost, dredging costs continue to rise, and all dredging needs are not met
- Loss of water/flood storage capacity due to sedimentation
- Shoreline erosion and loss of function and value of natural features
- Only 30% of dredged sediment is used beneficially

CAPABILITY NEEDS

- Leap-ahead construction and operation technologies to lower costs and accelerate schedules
- Next generation sensors, monitoring and modeling technologies to reduce sediment imbalances, channel in-filling and dredging needs
- National physical modeling facility to test new marine/aquatic dredging and construction techniques
- Engineering With Nature® solutions for sediment that deliver multi-purpose value

OUTCOMES

- \$80M annual investment in sediment innovation over five years delivers \$10B in cost savings and added value over the first 15 years
- Increase national beneficial use from 30% to >70% over 10 years
- Advance USACE sustainability by expanding environmental and social benefits at navigation projects by 50% over 10 years

INNOVATION IN SEDIMENT MANAGEMENT

Regional Sediment Management Program Established 1999, CERB Charge

"A <u>systems</u> approach using best management practices for more efficient and effective use of sediments in <u>coastal</u>, <u>estuarine</u>, and <u>inland</u> environments for <u>healthier</u> and more <u>resilient</u> systems."

The Program Funds Projects that:

- Recognize sediment as a valuable <u>resource</u>
- <u>Work across business lines, projects, and authorities</u> to create short and long-term economically viable and environmentally sustainable solutions
- <u>Improve</u> operational efficiencies and natural exchange of sediments
- <u>Consider</u> regional implications of project scale actions and benefits
- <u>Apply/Enhance</u> tools and technologies for regional approaches
- <u>Share</u> lessons learned, information, data, tools, and technologies
- <u>Communicate and collaborate</u>

Engineering With Nature_®

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and

social benefits through collaboration.

Key Elements:

- Science and engineering that produces operational efficiencies
- Using natural process to maximum benefit
- Broaden and extend the benefits provided by projects
- Science-based collaborative processes to organize and focus interests, stakeholders, and partners

www.engineeringwithnature.org

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Engineering With Nature

US Army Cor

UNCLASSIFIED

ENGINEERING WITH NATURE Advancina nature-based solutions

Engineering With Nature

Engineering With Nature

SUPPORTING MISSION RESILIENCE AND INFRASTRUCTURE VALUE AT DEPARTMENT OF DEFENSE INSTALLATIONS

- Coastal erosion costs ~\$500M/yr across the US, and the federal government spends \$150M/yr for traditional beach nourishment
- Sediment deficits are an important contributor to erosion
- The USACE places **48Myd³/yr** of dredged sediment in offshore disposal areas, much of which could be beneficially used
- Isolated nearshore nourishment documentation could impede
 & limit dredged sediment beneficial use opportunities

SOLUTION

- Develop Sediment Mobility Tool for rapid evaluation of potential placement sites
- Consolidate the current state of knowledge and practice for nearshore nourishment
- Develop best practices for nearshore nourishment

IMPACT

- Improve nearshore nourishment information availability on larger scales than previously feasible
- Increase nearshore nourishment projects for improved coastal sustainability and resilience

Beneficial Use of Dredged Sediment for Nearshore Nourishment

- 1986 WRDA dictated dredged material in Mobile Bay navigation channel be disposed at sites as far as 40 miles from the bay
- Limited dredge type to ocean-going vessels and nearly tripled dredging costs

SOLUTION

- Thin Layer Placement demo in Mobile Bay included 9M cubic yards of sediment
- ERDC used multiple data collection and modeling tools to determine sediment transport directions after placement

IMPACT

- Modeling/monitoring results brought unaminous decision for in-bay placement
- Environmentally-acceptable alternative to ocean disposal
- \$6M/year cost savings for Mobile Bay

ECOSYSTEM RESTORATION BY THIN LAYER PLACEMENT OF SEDIMENT

ECOSYSTEM RESTORATION BY THIN LAYER PLACEMENT OF SEDIMENT

o 202

APPLICATIONS

- TLP has been implemented across the nation
- Though TLP can be completed with any sediment type, it is an innovative way to beneficially use fine sediment

STATUS

- More R&D on morphologic evolution of TLPs continues
- Models are being developed to predict evolution

BENEFITS

- Allows for beneficial use of dredged material
- Creates more sustainable and resilient coast lines
- Increases beneficial use of fine dredged material

- Beneficial use of Dredge Material (BUDM) projects in wetlands provide a suite of ecosystem and flood risk reduction benefits.
- Wetland nourishing often requires movement of the discharge pipe, which is time consuming, costly, and can damage the marsh surface.

SOLUTION

- Sediment Distribution Pipe can:
 - Place sediment over a larger region
 - Potentially separate sand from fine material for targeted placement

Innovative Sediment Placement Technology: Sediment Distribution Pipe

IMPACT

- Increase BUDM for USACE wetland projects by:
 - More efficient wetland nourishment
 - Reduced impact to marsh surface
 - Increased dredge production rates

Innovative Sediment Placement Technology: Sediment Distribution Pipe

WHAT'S NEXT

With additional resources, we will demonstrate the applications for using the SDP to increase efficiency in BUDM projects.

APPLICATIONS

- Wetland nourishment at Sturgeon Island, NJ :
 - Elevated pipe allows sediment to flow in multiple directions
 - Non-elevated pipe uses pipe as containment and places sediment on one side
 - Marsh edge nourishment can place a dynamic layer of sediment on the marsh edge for protection

STATUS

- Success at Sturgeon Island, NJ being written in a technical report for future projects
- Laboratory experiments ongoing to evaluate sorting and placement efficiencies

BENEFITS

- Increased beneficial use of dredged sediment to nourish wetlands by:
 - Efficiently placing sediment over larger area
 - Optimizing engineering properties of sediment directly placed
 - Reducing containment costs
 - Reducing construction-related damage to the wetland

- Understanding density current dynamics such a fluidization, transport, and deposition.
- Inefficient dredging operations at active ports & in close proximity to wharfs and berthed ships
- USACE reservoirs with excessive sedimentation reducing flood control capacity.

SOLUTION

- Field observation and data collection of water injection dredging (WID) operations.
- Development of innovative dredging methods for targeting critical shoals and sustaining port operations.
- Dredging in non-traditional environments (reservoirs) in need.

IMPACT

- Improved predictive capability of dredging production rate & density current dynamics.
- Cheaper and faster dredging at critical port infrastructure.
- Dredging USACE flood-control infrastructure (reservoirs) to increase capacity.

Innovative Dredging

nnovative Dredging

WHAT'S NEXT

With additional resources, transition to innovative reservoir dredging earlier than planned.

APPLICATIONS

- Dredging in close proximity to harbor and port infrastructure without impeding port or dredge operations.
- Federal and non-federal port operators in need of flexible and timely dredging of critical shoals to prevent draft restrictions.
- Deep and shallow draft channel and port managers that have chronic draft restrictions and/or inadequate disposal capacity

STATUS

- Field data collection of water injection dredging operations in Wilmington NC.
- PORTS 2022 Conference Article, <u>Water Injection Dredging, a Cost-</u> <u>Effective Force of Nature</u>, published October 2022

SPR BENEFITS

- Reduction or elimination of channel and harbor draft restrictions
- Reduced cost and time required to dredge channels and ports
- Reduced need for confined or offshore disposal
- Increase lifespan of reservoirs and sustainable flood-control capacity

elopment Center

- Dredge haul distances and costs are increasing due to limited sand resources that meet present regulatory standards
- Regulatory sand compatibility standards (size, fine sediment content, color) are applied at the dredging site, not the beach, neglecting the sediment composition and compatibility changes induced by the dredging process

SOLUTION

- Collect sediment samples to determine representative sediment composition changes caused by dredging
- Engage with state agencies to account for dredge-induced sediment changes in applying the regulation

IMPACT

- Improve sediment compatibility for beach nourishment and beneficial use
- Increase sand resources suitable for beach nourishment and regional sediment management
- Reduce sediment haul distances and cost

FINE SEDIMENT REMOVAL DURING HOPPER DREDGING

FINE SEDIMENT REMOVAL DURING HOPPER DREDGING

WHAT'S NEXT

Pilot applications to demonstrate technology to local stakeholders could be conducted

APPLICATIONS

- Planned proof-of-concept application for upcoming beach nourishment project
- Coastal districts can apply research findings to better estimate sediment compatibility, expand available offshore sand resources for beach nourishment, and support beneficial use of navigation dredged material

STATUS

- Phase 1 research is complete, demonstrated nearly 90% removal of fine sediment content from borrow area to beach; Technical report published in 2019 and results presented at two technical conferences
- Florida DEP engaged with Phase 2 research and proof-of-concept application (scheduled for 2023)
- Navigation dredging research delayed by COVID-19 restrictions on hopper dredging fleet

BENEFITS

- Reduced costs for searching for offshore sand sources
- Reduced time and cost of beach nourishment projects
- Increased sand retained in the littoral system
- Reduced costs for permitting offshore placement sites

- Disposal of dredged material offshore or upland can lead to a lack of sediment along critically eroding shorelines and riverbanks
- Sediment is a resource and therefore there is a need to increase beneficial use (BU) across the nation
- Currently unclear how much BU is being done and where

SOLUTION

- RSM Beneficial Use Database was created to visually display BU data from across the USACE
- Understand trends in BU in time
- Identify areas of improvement

IMPACT

- By visualizing BU across USACE, we can increase the amount of BU incorporated in projects
- Can lead to healthier systems and a more resilient environment

RSM BENEFICIAL USE DATABASE

RSM Example: Mouth of the Columbia River

Courtesy USACE Portland District

Challenge

- Prevent "wasting" sediment to the DWS
- Protecting public investment (Jetty)
- Shoreline erosion
- Protect benthic habitat

Goals

Implement NWP RSM Strategy

- Keep sediment in the littoral cell (BU)
- Obtain/place new nearshore sites
- Protect South Jetty Root
- Dune Building: Sand Fencing
- Lower Maintenance Dredging Costs/Cycle Time
- Increased Habitat Opportunities for Benthics
- Stakeholder collaboration
- \$110,000 cost savings/season South Jetty Site
- Additional Cost Savings/Environmental Benefits TBD

US Army Corps of Engineers • Engineer Research and Development Center

RSM DASHBOARD -- https://rsm.usace.army.mil/budb

RSM - Navigation Sediment Placement

Summary About this Application

Regional Sediment Management 🛛 🖪 🎔 🔗

WRDA 2020 section 125

- This section renews the Congressional commitment to beneficial use (BU) of dredged material by:
- (a) establishing a national policy to maximize the beneficial use of material obtained from Corps projects; requiring the Corps to calculate the economic and environmental benefits of the beneficial use of dredged material when calculating the Federal Standard,
- (b) amending section 204(d) of WRDA 1992 to direct that other-than-least-cost placements of dredged material for certain purposes be funded using appropriations available for construction or operation and maintenance of the water resources development project producing the dredged material
- (c) increasing the number of beneficial use of dredged material demonstration projects to 35 projects,
- (d) directing the Corps to develop five-year regional dredged material management plans, and
- (e) emphasizing greater coordination across the Corps' dredging contracts.

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED // FOR OFFICIAL USE ONLY

Regional Sediment Management = Resilient Healthy Systems

RSM@usace.army.mil Katherine.E.Brutsche@usace.army.mil

Regional Sediment Budgets Local Actions=Regional Benefits

Data Management and Access

Improved Relationships Outreach & Training

Riverine & Reservoir Mgmt

Ecosystem/Aquatic Habitat

US Army Corps of Engineers • Engineer Research and Development Center